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A New Frequency Domain
Symmetrical Condensed TLM Node
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Abstract—This paper reports the development of a new sym-
metrical condensed TLM node derived directly in the frequency
domain. The new node can accommodate a graded mesh and can
model lossy anisotropic media described by a static conductivity
tensor along with complex permittivity and complex permeability
tensors. The frequency domain TLLM method is used to generate
modal dispersion curves for mWave and mm Wave guiding struc-
tures. The results compare the new node to existing time domain
symmetrical condensed nodes.

1. INTRODUCTION

HE TLM technique has recently been applied in the

frequency domain [1], [2], where the major advantages
of TLM simulation have been conserved; namely, the ease
with which electromagnetic fields in inhomogeneous and com-
plex media can be simulated. Time domain nodes, such as
the symmetrical condensed node [3], [4], [5] or the hybrid
symmetrical condensed node [6], are inherently ill-suited to
frequency domain analysis as both nodes use open or short cir-
cuited stubs to model the characteristics of the medium where
propagation takes place. These stubs add numerical dispersion
when the permittivity or permeability of the medium increases.
A lossless frequency domain node was originally proposed by
Johns [2] where the phase constant of the link lines are varied
to account for mesh grading and the local properties of the
medioum. The characteristic impedance of the link lines are
the same and take on the value of the intrinsic impedance
occupying the space inside the TLM cell. If the medium to be
modelled is inhomogeneous. then scattering may occur at the
connection plane between two link lines.

This paper reports the development of a generalized sym-
metrical condensed TLM node derived directly in the fre-
quency domain. This new 12 x 12 node is stubless and
models local variations in mesh size, conductivity, complex
permittivity, and complex permeability by varying the complex
characteristic impedance and propagation constant of the link
lines. Anisotropic conductivities, permittivities, and permeabil-
ities can be modelled by the node if the tensors involved are
diagonal. The frequency domain node is suitable for use with
the steady-state TLM Method [2] or the FD-TLM method
(71, [8].
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II. FORMULATION

Maxwell’s curl equations in the frequency domain are
written for lossy anisotropic media:

V X E=—([om] + ju[w')H M
V x H = ([o.] + jw[¢])E 2)

where [0,,], [oe], 1] and [€] are diagonal tensors sharing
common principal axes. The components of the conductivity
tensors are defined as o, = wpf and o, ; = e, + we
where ¢ € {z,y,2}. 0, is the static electrical conductivity
along the ¢ axis.

A. Lossy Anisotropic Media

The frequency domain symmetrical condensed node shares
the numbering scheme and geometry of the stubless node given
in [3]. In a manner similar to time domain TLM theory [3],
[9], an analogy is drawn between Maxwell’s frequency domain
curl equations, written in component form, and the equations
governing the propagation of complex voltage waves on the
transmission line network. This analogy yields six equivalence
relations that relate the complex characteristic impedance and
propagation constant of the link lines to the local dimensions of
the mesh and properties of the medium to be modelled. From
these TLM equivalence relations, we obtain the characteristic
impedance and propagation constants of the link lines:

1 . .
Ypg = 5\/(0'541 + ]WE;)(UWLT + ]WM;,) (3)

Ay [(Om,r + jwpr)
Z =9 jmr ) 4
7= AN (oo, + jwel) C))

where p,q,7 € {z,y,2}, p # q # r and six different pairs
pg are generated. For example, if p = 2 and ¢ = x then
Ypg = 7.z refers to the propagation constant of the lines
carrying Vg and V5, polarized along x and propagating along z.
The characteristic impedance of a link line may vary from node
to node if the medium to be modelled is inhomogeneous or if
the mesh grading varies across the structure. The connection
of the link lines at the center of the node is described by the
voltage scattering matrix S, in (5).

Vref — [SU]Vinc (5)
where

inc,ref __ inc.ref inc,refy¢
A% =[V] N

and the matrix S, shown at the bottom of the next page.
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The elements of the matrix S, are determined by imposing
the conservation of charge, the conservation of magnetic flux,
the continuity of the electric field, and the continuity of the
magnetic field to the node [10]:

Gpq = quZjPer _ ZT,,ZJ:prr =bpr —dpg  (6)
pg = ZTPZJ:prT B Zszfqu =dpg —bpg (D)
byy = ngz: ®)
Ay = ‘ZTZfZ; ©)

where p,q,7 € {z,v,%2},p # ¢ # r. For the special case
of free space propagation, modelled with a uniform mesh
(Ap = Ay = A, = A,), the propagation constant and the
characteristic impedance of the link lines are, from (3) and (4),
Yog = Boli/2 = jw\/lioeoAi/2 and Zyy = Zo = +/t0/¢0s
(6) to (9) yield apq = ¢pg = 0, bpg = dpg = 1/2, thus
reducing the scattering matrix S, to the stubless 12 x 12 matrix
originally proposed by Johns [3]. The voltage waves at the
input/output port of the link lines can be obtained by applying
the following transformation:

Vref — [e—'yTpA,/2]diag[Sv][e—vrpAr/Z]diagVinc (10)

port port

B. Lossy Isotropic Media

If the medium to be modelled is isotropic, then the prop-
agation constant of the link lines as given by (3) yield the
same value and the characteristic impedances given by (4)
vary to account for mesh grading; the matrix S, remains as
given above. The node given in [2] represents the alternate
possibility where the characteristic impedance of the link
lines are the same but the propagation constants vary. The
node in [2] can be made to account for lossy media by
replacing w/pe with \/(oe + jwe')(om + jwp') and letting
the characteristic impedance of the link lines take on the
complex intrinsic impedance of the medium inside the cell:

V(Om + jop)[(oc + jwe).

181

III. NUMERICAL RESULTS

A. Rectangular Metallic Waveguide

Fig. 1 shows the modal dispersion characteristics of a rect-
angular metallic waveguide filled with a lossy dielectric. We
note the excellent agreement between the analytical solution
and the results computed with the FD-TLM method. The
simulation of the higher-order modes is somewhat better using
the frequency domain node. In particular, we note from Fig.
1(a), that the time domain nodes provide two dispersion curves
for the degenerate modes TE/TM;; and TE/TMs;.

B. Shielded Rectangular Dielectric Coupler

Fig. 2 shows the shielded dielectric coupler and phase
dispersion characteristics obtained using the FD-TLMmethod
and the frequency domain node. Magnetic and electric walls
are placed between the dielectrics in order to generate the
fundamental modes having even and odd symmetry E7,, and
EY,,. The results are compared to the mode-matching [11]
and Fourier TLM [12] methods. Simulations using the time
domain nodes were found to agrec well with those obtained
using the frequency domain node.

C. Computational Issues

Convergence to the analytic solutions given in Fig. 1 is quite
rapid as a 10 X 5 mesh of TLM nodes was used to successfully
generate the first seven guided mcdes. The results shown in
Fig. 2 were obtained using a 12 x 8 mesh of nodes. The CPU
time required per frequency point using a 10 x 10 mesh is about
55 minutes on a low-speed HP900O series 400 workstation. All
guided modes of interest are obtained in one sweep.

1V. CONCLUSION

A new frequency domain symmetrical condensed TLM
node has been presented. This node is simpler to use in
conjunction with frequency domain TLLM techniques than time
domain nodes. The performance of three TLM nodes has been
compared by analysing two guiding structures. It has been

I 1 2 3 4 5 6 7 8 9 10 11 12 b
1 Qg by ez by —de Crz
2 bay Ay dey Coy —Ozy bay
3 dy. Oy by, by Cyr  —dys
4 be  Gye  dys dye  Cye bye
5 dze Oz bz Czx —dg bue

S = 6 d.y by Gy by —dyy  Cay

Y 7 ~dze  Caz by Azx Aoz bax
8 byx Cyz  — Oy dya Qyz byz
9 byy Cay —dyy Oy Ay bsy
10 Aoy by Cry by dzy Gzy
11 —dyz Cyz byz byz Gyz dy,:
12 Cos be —dy, b des Qg2
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Fig. 1. Modal dispersion of a rectangular metallic waveguide filled with

a lossy dielectric. (a) Attenuation constant. (b) Phase constant. Waveguide
dimensions are @ = 5 cm, b = 3 cm, €, = 3.0 — j0.04, p, = 2.5, and
ose = 0.01 S/m.

found that all three nodes provide similar results and that they
agree well with exact or published solutions.
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Fig. 2. Modal dispersion of a shielded dielectric coupler.
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