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A New Frequency Domain

Symmetrical Condensed TLM Node
Pierre Berini, Student Member, IEEE, and Ke Wu, Senior Member, IEEE

Abstract—This paper reports the development of a new sym-

metrical condensed TLM node derived directly in the freqnency

domain. The new node can accommodate a graded mesh and can
model lossy anisotropic media described by a static conductivity

tensor along with complex permittivity and complex permeability
tensors. The frequency domain TLM method is used to generate
modal dispersion curves for m Wave and mm Wave guiding struc-

tures. The results compare the new node to existing time domain

symmetrical condensed nodes.

I. INTRODUCTION

T HE TLM technique has recently been applied in the

frequency domain [1], [2], where the major advantages

of TLM simulation have been conserved; namely, the ease

with which electromagnetic fields in inhomogeneous and com-

plex media can be simulated. Time domain nodes, such as

the symmetrical condensed node [3], [4], [5] or the hybrid

symmetrical condensed node [6], are inherently ill-suited to

frequency domain analysis as both nodes use open or short cir-

cuited stubs to model the characteristics of the medium where

propagation takes place. These stubs add numerical dispersion

when the permittivity or permeability of the medium increases.

A lossless frequency domain node was originally proposed by

Johns [2] where the phase constant of the link lines are varied

to account for mesh grading and the local properties of the

medium. The characteristic impedance of the link lines are

the same and take on the value of the intrinsic impedance

occupying the space inside the TLM cell. If the medium to be

modelled is inhomogeneous, then scattering may occur at the

connection plane between two link lines.

This paper reports the development of a generalized sym-

metrical condensed TLM node derived directly in the fre-

quency domain. This new 12 x 12 node is stubless and

models local variations in mesh size, conductivity, complex

permittivity, and complex permeability by varying the complex

characteristic impedance and propagation constant of the link

lines. Anisotropic conductivities, permittivities, and permeabil-

ities can be modelled by the node if the tensors involved are

diagonal. The frequency domain node is suitable for use with

the steady-state TLM Method [2] or the FD-TLM method

[7], [8].

Manuscript received Jaunary 28, 1994.
The authors are with the D6partement de gc%ie 61ectrique et informatique,

Ecole Polytechnique de Montr&al, POLY-GRAMES, Station Centre Vllle,
Morm%al, Qu4bec, H3C 3A7, Canada.

IEEE Log Nnmber 9402179,

II. FORMULATION

Maxwell’s curl equations in the frequency domain are

written for lossy anisotropic media:

v x E = -([on] +jccJ[J])H (1)

v x H = ([me] +.@[d])E (2)

where [o~ ], [a.], [~’] and [c’] are diagonal tensors sharing

common principal axes. The components of the conductivity

tensors are defined as Ore,, = w~~ and CJ.,i = o,.,, + we?

where i E {~, y, z}. oS.,, is the static electrical conductivity

along the i axis.

A. Lossy Anisotropic Media

The frequency domain symmetrical condensed node shares

the numbering scheme and geometry of the stubless node given

in [3]. In a manner similar to time domain TLM theory [3],

[9], an analogy is drawn between Maxwell’s frequency domain

curl equations, written in component form, and the equations

governing the propagation of complex voltage waves on the

transmission line network. This analogy yields six equivalence

relations that relate the complex characteristic impedance and

propagation constant of the link lines to the local dimensions of

the mesh and properties of the medium to be modelled. From

these TLM equivalence relations, we obtain the characteristic

impedance and propagation constants of the link lines:

7,, = ;/(0.>!?+ @&)(Gm. + @K) (3)

(4)

where p, q, r c {x, y, z}, p # q # r and six different pairs

pq are generated. For example, if p = z and q = x then

?Pq = YZZ refers tO the propagation constant of the lines
carrying Vg and V2, polarized along x and propagating along z.

The characteristic impedance of a link line may vary from node

to node if the medium to be modelled is inhomogeneous or if

the mesh grading varies across the structure. The connection

of the link lines at the center of the node is described by the

voltage scattering matrix S. in (5).

Vref = [Su]vinc (5)

where

Vine’ref = [vP’ref . ..> w“”]’
and the matiix SU shown at the bottom of the next page.
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The elements of the matrix S. are determined by imposing

the conservation of charge, the conservation of magnetic flux,

the continuity of the electric field, and the continuity of the

magnetic field to the node [10]:

z qP z VP
apq = — = bPr – dpq (6)

zqp + Z?-p -Zp + .zp?.

z z VP
cPq = Zrp :Zpr –

-Zp + Zqp
= dpq – bpq (7)

z
bPq = Zrp :Zqp

z
dPfl = Z,p yzpT

(8)

(9)

where p, q, r s {z, y, .z}, p # q # r. For the special case

of free space propagation, modelled with a uniform mesh

(Ax = A, = A, = Al), the propagation constant and the
characteristic impedance of the link lines are, from (3) and (4),

~Pq = ~PoAz/2 = ~w@K6Al12 and Zpq = Zo = ~z;

(6) to (9) yield apq = Cpq = O, bPq = dpq = 1/2, thus

reducing the scattering matrix S. to the stubless 12x 12 matrix

originally proposed by Johns [3]. The voltage waves at the

input/output port of the link lines can be obtained by applying

the following transformation:

V~~rt = [e-7rpA”/2]~jag[Sv] [e-7’pAr/2]~i.gV~r~(10)

B. ikssy Isotropic Media

If the medium to be modelled is isotropic, then the prop-

agation constant of the link lines as given by (3) yield the

same value and the characteristic impedances given by (4)

vary to account for mesh grading; the matrix SV remains as

given above. The node given in [2] represents the alternate

possibility where the characteristic impedance of the link

lines are the same but the propagation constants vary. The

node in [2] can be macle to account for lossy media by

replacing w@ with fire. + jwe’) (om + jw~’) and letting

the characteristic impedance of the link lines take on the

complex intrinsic impedance of the medium inside the cell:

/(%1 + j~P’)/(~e + jwq.

III. NUMERICAL RESULTS

A. Rectangular Metallic Waveguide

Fig. 1 shows the modal dispersion characteristics of a rect-

angular metallic waveguide filled with a lossy dielectric. We

note the excellent agreement between the analytical solution

and the results computed with the FD-TLM method. The

simulation of the higher-order modes is somewhat better using

the frequency domain node. In particular, we note from Fig.

l(a), that the time domain nodes provide two dispersion curves

for the degenerate modes TE/TMll and TE/TM21.

B. Shielded Rectangular Dielectric Coupler

Fig. 2 shows the shielded die] ectric coupler and phase

dispersion characteristics obtained using the FD-TLMmethod

and the frequency domain node. Magnetic and electric walls

are placed between the dielectrics in order to generate the

fundamental modes having even and odd symmetry E~l, and
E~lO. The results are compared to the mode-matching [11]

and Fourier TLM [12] methods, Simulations using the time

domain nodes were found to agree well with those obtained

using the frequency domain node.

C. Computational Issues

Convergence to the analytic solutions given in Fig, 1 is quite

rapid as a 10 x 5 mesh of TLM nodes was used to successfully

generate the first seven guided mcldes. The results shown in

Fig. 2 were obtained using a 12 x 8 mesh of nodes. The CPU

time required per frequency point using a 10x 10 mesh is about

55 minutes on a low-speed HP9000 series 400 workstation, All

guided modes of interest are obtained in one sweep.

IV. CONCLUSION

A new frequency domain symmetrical condensed TLM

node has been presented. This node is simpler to use in

conjunction with frequency domain TLM techniques than time

domain nodes. The performance of three TLM nodes has been

compared by analysing two guiding structures. It has been
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Fig. 1. Modal dispersion of a rectangular metallic waveguide filled with
a lossy dielectric. (a) Attenuation constant. (b) Phase constant. Waveguide
dimensions are a = 5 cm, b = 3 cm, G. = 3.0 – JO.04, ~, = 2.5, and
ase = 0.01 S/m.

found that all three nodes provide similar results and that they

agree well with exact or published solutions.
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Fig. 2. Modal dispersion of a shielded dielectric coupler.
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